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Abstract

Installation of a close-fitting polymeric thin-walled lining is now standard practice for the rehabilitation of deteri-
orating gravity pipes. Design of these linings focuses primarily on their ability to resist an external head of groundwater
pressure whilst experiencing long-term creep deformations. Existing structural design guidelines are crude and do not
provide consistent safety factors. In this paper an existing simple analysis for linear elastic (geometrically non-linear)
buckling loads is developed into a time stepping procedure for calculation of the creep lives of time dependent non-
linearly elastic systems subject to long-term constant pressure. The results so obtained using different simulations of the
creep data obtained for a particular material are then compared with those derived from a set of corresponding physical
tests and alternative numerical modelling, and appropriate conclusions are drawn.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Polymeric pipe linings are now routinely used to renovate deteriorating gas, water, and sewerage pipes.
In the latter case the pipes run under low flow conditions except during occasional periods of peak loading
and are hydraulically designed to ensure gravity flow under normal conditions. Deterioration of a sewer
(gravity) pipe is normally initiated by internal durability problems, and takes the form of a regular pattern
of longitudinal cracks (WRc Engineering, 1995). Groundwater then starts to wash the soil support into the
pipe, leading to gradual loss of shape and consequent reduction in load carrying capacity of the soil-pipe
system. Nevertheless, provided hydraulic integrity of the system can be restored at small deformations (i.e.,
in a state of stable equilibrium) the original system remains capable of carrying all superimposed ground
and traffic loading (Gumbel, 1997; Boot et al., 2001). This is the situation achieved by installation of a
close-fitting, thin-walled (i.e., low stiffness), impermeable, polymeric lining. The lining does not bond to the
host pipe, and therefore does not form a composite structure with it (WRc Engineering, 1995). The lining is
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therefore only required to sustain the head of hydrostatic pressure that must be assumed to build up, and be
transferred though the cracked pipe, once hydraulic integrity is ensured. This paper focuses attention on the
structural behaviour of such linings installed in pipes of nominally cylindrical geometry, as this is the most
common situation in practice.

All the current generation thermoset and thermoplastic materials used for pipes and pipe linings are
amorphous polymers; they can be assumed to behave in a linear elastic manner under short-term loading
below a threshold stress, but always exhibit creep under sustained loading (Struik, 1978). Due to the
groundwater pressure acting in the annulus between the host pipe and lining, and the effectively rigid
constraint provided by the host pipe, the lining will be subject to a state of combined bending and direct
thrust in the plane of the cross-section, which can normally be assumed to be under plane strain or plain
stress (Boot and Javadi, 1998b) conditions. In the case of thin-walled linings with nominally circular cross-
section, the compressive stresses can reach a relatively high level (in comparison to an unconstrained pipe),
and consequently flexural creep will cause progressively increasing axial-flexural interaction. Providing an
adequate factor of safety against constrained creep buckling (within the confines of the host pipe, and over a
specified minimum design life) therefore constitutes the prime design criterion for these linings (Yamamoto
and Matsubara, 1981; Boot and Welch, 1996; Toropova and Boot, 1998).

The first significant study of the buckling capacity of thin-walled cylindrical linings was undertaken by
Amstutz (1969), who considered the elastic buckling of steel linings for concrete pipes and pressure vessels,
and included both flexural and axial deformations in his analysis, together with the dominant non-linear
term in the latter. Boot and Welch (1996) developed a fully consistent finite element (FE) analysis capable
of incorporating all essential features of nominally cylindrical polymeric linings, including the effects of
imperfect geometry and visco-elastic material behaviour. However, this approach is not suitable for routine
design due to its lack of portability, and the cost of maintaining a commercial FE package for a low cost
pipe renovation technique. A simplified but consistent procedure, capable of incorporating all the essential
features of the system, is required.

Glock (1977) reformulated Amstutz’s elastic analysis and obtained a convenient closed form solution for
the case of perfectly cylindrical systems assuming the lining adopts a single lobe mode of deformation.
Glock’s analysis has recently been used as the basis for obtaining buckling pressures for a particular type of
commercially available polymeric sewer lining subject to increasing short-term loading to failure (Omara
et al., 1997). To allow for the effects of imperfections in real systems, they also introduced an empirical
coefficient based on their physical testing results. El-Sawy and Moore (1997) and Moore (1998) have
similarly attempted to obtain an imperfection parameter to include in Glock’s analysis by using FE
analysis. However, Boot (1998) has shown how Glock’s analysis can be consistently re-expressed to include
the effect of a small annular imperfection between the perfectly circular lining and rigid frictionless con-
straining boundary simulating the host pipe. This shows that two independent parameters are required to
correctly model the effects of varying gap. Furthermore, lined gravity pipe systems can incorporate variable
magnitudes of several different types of imperfection, and can deform into one or two lobe modes de-
pendent on whether the imperfect system is predominantly symmetrical or asymmetrical (Boot, 1998;
Gumbel, 2001). It is inevitable therefore that a single empirically obtained imperfection coefficient, applied
to a particular deformation mode, cannot be used to provide a consistent design safety factor to the full
range of systems requiring specification. In addition the theoretical treatments so far discussed do not
address the material creep aspect of practical field systems.

Current design criteria for polymeric pipe linings subject to external pressure (WRc Engineering, 1995;
ASTM, 1998) use a modified version of the classical linear elastic buckling solution for an unrestrained
cylinder (Guice et al., 1994). A (secant) modulus, appropriately reduced from the short-term value, is in-
corporated to obtain a correspondingly reduced elastic buckling load to simulate creep buckling behaviour.
The poor simulation of the effects of geometry this implies (Boot and Javadi, 1998a,b) can be significantly
enhanced by utilising Glock’s analysis in the same manner (Omara et al., 1997). However, the theoretical
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validity of obtaining an equivalent buckling load in this way is verified only for the case of steady state
creep (Hult, 1966), which depends on linear strain—displacement relationships to maintain the strains at all
points at the same relative magnitudes throughout the deformation process. In addition the reduced
modulus specified for industrial applications (WIS 4-34-04, 1995) is the 50 year modulus obtained in flexure
at a particular stress level, and this may not be representative of the actual behaviour of field systems which
are subject to a combination of axial compression and flexural deformations.

What is required therefore is a simple theoretical analysis which can allow for the non-linear effects of
geometry and variable imperfection modes, and which provides a consistent simulation of the actual
material properties. Accordingly, in this paper Boot’s analysis (1998) for the geometrically non-linear
buckling of a linearly elastic ring, subject to an annular imperfection, is re-worked to make a consistent
allowance for the observed creep behaviour. The results so obtained are compared with the available
physical test results, and FE analysis incorporating the same material information, and appropriate con-
clusions are drawn.

2. Formulation of the basic system equations

If a lining is installed at a very close fit within a perfectly cylindrical host pipe, such as is the case (ASTM,
1998) when the lining is installed as a cured-in-place pipe (CIPP), then surface roughness and differential
temperature movements tend to be the dominant sources of geometric imperfections. Under these cir-
cumstances the overall observed initial imperfection mode tends to take the form of a small symmetric gap
(Guice et al., 1994) as shown in Fig. 1a, and attention can be focused on any representative (e.g., unit)
length of lining. The system has radius R (taken as the mean lining radius) and a small symmetrical lack of
fit given by:

Wy = Wpa (la)
When subject to external pressure, system symmetry results in the two lobe mode of deformation illustrated
in Fig. 1b. Fig. 2a illustrates the loose fit situation normally achieved when a factory-produced lining pipe is

winched into the host pipe (see e.g., Weaver et al., 1999). The asymmetrical lack of fit can now be written as
Boot (1998):
()
Wo(@) = Wo1 (1 — ;) (1b)

where wy is the maximum lack of fit, and ¢ is the central angle measured from the position of wy; (see Figs.
2 and 3a). When subject to external pressure, the lining will now deform in the single lobe mode illustrated

Flexible 7
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Fig. 1. Close fit lining: (a) undeformed and (b) deformed lining.
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Fig. 2. Loose fit lining: (a) undeformed and (b) deformed lining.
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Fig. 3. Basic geometry considered for two lobe deformation: (a) definition of coordinate systems and displacement components and
(b) definition of initial and deformed lining geometries.

in Fig. 2b, with w; the maximum lobe deformation, and 2¢, the angle subtended by the lobe at the centre of
the pipe (see Fig. 3b).

Consider the deformation modes delineated in Figs. 1b and 2b caused by application of the annulus
pressure. The shape of the deformed lobe can be expressed in the form (Glock, 1977; Boot, 1998):

w(®) = w) cos’ (;;i) (2)

Under the conditions of interest here the fully non-linear axial membrane strains (¢) and bending strains (k)
can be reduced to (Omara et al., 1997):

w—wy Ou 1 /0(w—wp) :
-5 () o
o (w—wp) N O (w —wy) (3b)

R? Os?
For isotropic linear elastic behaviour the corresponding axial forces and bending moments per unit length
of lining are then given by:
N=E-A-gg M=E-I-x (4a,b)
where E is the elastic modulus of the lining material, 4 and / are the area and second moment of area

respectively of the lining per unit length of pipe, and plane stress conditions are assumed in the lining; for
plane strain conditions in the lining E is replaced by E/(1 —?).
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Then for small deformation behaviour, the stress can be assumed constant over a strain increment,
and the principle of stationary potential energy (Washizu, 1982) can be written for a lining ring of unit
length:

nD nD nD
SHp:/o N68ds—|—/o M6de—/0 pow =0 (5)

where D = 2R and ds = Rd¢.
Substituting Egs. (1-4) into Eq. (5) and rearranging yields:

nEl [\ ON R
-2 (= 2CN 22 — py= =0 6
h 8R3<¢0> wi+ CN6w1 P¢02 (6)
3E( 7\, ON R
.:___ -/ 2 - — e
where
EA . mw
N_ﬁ |:W1¢0 —WOTC—@%} (8)
ON EA W ON EA 2 (w\?
— =y - ] = — (= 9a,b
owi kR {‘bo 4R ¢J’ 3y knR [W‘ 3R (4)0) (9a,0)

and for two lobe deformation prior to buckling:

k=1, wy=wp, C=nR/4EA, (10)
whilst for single lobe behaviour prior to buckling:

k=2, wy=wy, C=nR/2EA, (11)

and the generalised form of wyj is fonD wo(s)ds.

Eqgs. (6) and (7) constitute a set of non-linear simultaneous equilibrium equations relating the applied
pressure to the deflection parameters wi, ¢, though the system properties E, I, 4, R, w;. Thus, assuming that
the system becomes geometrically unstable before material failure, Eqgs. (6) and (7) provide the basis for
determination of the following two critical situations:

(a) Buckling behaviour for systems possessing linear elastic material properties and subject to increasing
load to failure, and

(b) Creep lives for systems with non-linear time dependent material properties and subject to constant (or
gradually increasing) long-term loading.

3. Numerical determination of elastic buckling loads

The load-deflection path to failure can be obtained by incrementally increasing the applied load p and
solving for the corresponding deflection parameters w, (p), ¢,(p) using Newton—Raphson iteration (Owen
and Hinton, 1980). Thus at load p we seek the solution vector {x + dx} to Egs. (6) and (7), where
{x} = {wi, ¢y} ", that satisfies the truncated Taylor series

2 aﬁ
flx+oxt = fi{x}+ > e (12)
=1
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Egs. (12) reduce the original simultaneous non-linear equations (6) and (7) to a set of linear equations
which move each function closer to zero simultaneously. At each load increment equations (12) are re-
peatedly updated until the solution for {x + x} has converged (Press et al., 1989). The required derivatives

are obtained as:

of _ nE £3+EA <f>—n2W1 Z_EA 2 b0 — W _77:2w1
ow S8R \ g, ) " 2knR |7 T agoR| T 2knR |agoR | [P0 T 0T T8GR

of1 3EL (7 \* N EA o - w? 1+1 7\ w
=~ ==\ T | mt+t—|w — Wy — N =
0py SR\, ) ' 2kmR |0 0T T 84R 4\ ¢,) R
EA 1/ =n 2wf w DR
T 2knR W1+§(¢TO> E] [¢°_4¢0R} 2
Ofy 3El(m 4 EA , nzwf 1/ = 2w1
M“F(%) Ry L I3 i e iy
EA 2w, 1/ a\’w}| pR
T Sk [¢0_4¢0R] Wl*@(ao) ®| 2

o, 3EI T, EA

0p, 4R ¢ 2knR

2
+17I2w%
wi+= [ — ] 2
"8\¢) R

k4 w? Wi _W/n_nzw%
%R |4giR [0 0 8GR

Egs. (6), (7), and (13) are readily incorporated into a standard Newton—Raphson procedure (see e.g., Press
et al., 1989) for the solution at specified load, and which can automatically be incremented for increasing
load levels up to critical; £, C, and w; can be selected for one or two lobe buckling as appropriate. Fig. 4

I0D=0%
0.35 |-

03

0.25 -

Pressure (MPa)

02 I0OD=1%

0.15 -

7 I0D=2%
! i/ I0D=3%

3o T S T T S I O S S S SO S S
0 5 10 15 20 25 30 35

maximum displacement w4 (mm)

Fig. 4. Two lobe load deflection behaviour for a representative system (lining mean diameter =450 mm, thickness =6 mm, £ = 3860

MPa) at imperfection on diameter (IOD) = 0%, 1%, 2%, 3%.
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Table 1
Comparison of analytical and numerical solutions for a representative system (D = 450 mm, ¢ = 6 mm, £ = 3860 MPa)
Gap (%) Analytical solution Numerical solution
4 e P (MPa) Peie (MPa)
0.0 -22 0.1215 0.383 0.383
0.5 -2.705 0.786 0.202 0.202
1.0 —-2.856 0.919 0.140 0.140
1.5 —-2.896 0.888 0.110 0.110
2.0 -2.930 0.870 0.0918 0.0918

shows the results obtained for a representative system (lining diameter D = 2R, lining thickness 7) at a range
of imperfections, and where:

10D = imperfection on diameter = 2wy, /D

Thus wy is taken to be in the form of a symmetrical gap (see Fig. 1a) with the deformation mode as shown
in Fig. 1b. Each curve represents the load-deformation trace up to the maximum sustainable pressure (pg;;)
at which point the analysis becomes numerically unstable. Boot (1998) has shown how Eqgs. (6) and (7) can
be solved analytically to yield p.;; under these conditions. The solution can be specified at any gap in the
general form:

crif D
log (pEl) = ¢, log (7) +c (14)

The results obtained from Fig. 4 and Eq. (14) are compared in Table 1, and are identical to three significant
figures, thus verifying the proposed numerical procedure.

4. Creep life determination under constant long-term pressure loading

The linear elastic situation investigated in the previous section is representative of a short-term labo-
ratory test to failure under increasing load, using a typical commercial thermosetting polymeric lining (Boot
and Javadi, 1998a). However, as described in Section 1, the long-term design criterion for a nominally
circular polymeric lining is constrained creep buckling. The solution to Egs. (6) and (7) at any pressure p
can be written in the form:

gt Wy p
o} =/ (5o %) (15)
The extension of time independent to time dependent (creep) buckling is a classical problem (Kollar and
Dulacska, 1984; Godoy, 1996). Under constant or gradually increasing loads there are no inertia effects and
the equations for a static solution remain valid provided the revised material properties can be suitably
defined. For the problem under consideration we deem the creep pressure loading to be applied over a short
period (generating an initial linear elastic response) and subsequently held constant over the creep life. Then
since ¢, R, wy, p are not functions of time (7), when solving Eq. (15) for creep behaviour we seek the solution
for increasing {wy, ¢,} with time as E(t) decreases. Therefore, the numerical solution of Egs. (6) and (7)
described in Section 3 can be amended to solve for creep buckling lives using a time stepping procedure
(Owen and Hinton, 1980) provided E(t) for the lining material can be suitably defined.

A series of uniaxial flexural and compressive creep tests has been undertaken over a range of constant
working stress levels (Boot and Welch, 1989; Javadi and Boot, 1998) using a particular reinforced polyester
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Table 2

Power law parameters defining Eq. (16) for a commercial pipelining material
Stress state m n A (MPa"17")
Flexure 1.115 0.064 2.360x 107*
Compression 0.906 0.079 2.904x107*

resin typical of those used for CIPP close-fitting sewer linings. The results exhibited constitutive behaviour
expressible in the form:

¢(o,7) = Ag"7" (16)

The values of the parameters obtained are given in Table 2, and indicate a significantly stiffer response in
compression than tension, possibly due to a microfracture deformation mechanism.

Eq. (16) is an empirical fit to constant stress creep data, and represents the unique relationship between
stress and strain observed under the constant stress states investigated. This total strain theory is therefore a
non-linear elastic formulation, and not valid under generalised loading conditions (Hult, 1966). However,
since the problem under investigation does not involve unloading, and there is only a very gradual increase
in stress with time as axial-flexural interaction progresses, this concept should provide an adequate con-
stitutive model for present purposes.

For non-linear elasticity Eqs. (4) are usually taken (see eg. Zhu and Hall, 2001) to define E as the in-
stantaneous secant modulus Es(o,7) as shown in Fig. 5. This definition is valid provided the elasticity
equations are only mildly non-linear (Boot and Welch, 1996). Es(o, ) can be obtained from Eq. (16) via its
inverse as:

— 2 ggmDpn (17)

Creep path at constant stress co

Go

e

Fig. 5. Illustrating initial (£2) and general (E%) secant moduli at a constant creep stress ay.
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The non-linear elastic extension of Eqs. (6) and (7) can now be expressed in the form

/ R
fio1,32,7) = 0 = Bs(0, 0, (x1,2) = 2

where i = 1, 2 in turn, x;, x, = wi, ¢, and f; are defined by equivalence of Eqgs. (6), (7) and (18). Similarly
the solution to Egs. (18) at time ¢ 4+ d¢ becomes

X (18)

R
Si(x1 + 8x1,2x0 4 dxp, T + 07) = Es(t + 1) f; (21 + Ox1,x2 + Ox2) —% (x; + 8x;) (19)
The first term on the right hand side of Egs. (18) and (19) is separable in 7 and x;, x,. Furthermore, the value
of Es(t + 97) can be written from Eq. (17) as
1 _e(t+07)

_ -4 5 (m—1) 57)"
Es(o,t+01) o(t+ d1) o(t+817) (c+87)

Once Es(o, T + 1) is explicitly defined, Egs. (19) revert to the form of Egs. (6) and (7), and can therefore be
solved in exactly the same way. Now initially we use the explicit prediction o(t + 87) = ¢(t) to obtain
Es(t + 07) in Egs. (19) and successively update o(t + 87) until E5 has converged (see e.g., Owen and Hinton,
1980).

Finally it is necessary to identify a means of utilising the different responses obtained in compression and
flexure, noting that the actual condition generated in a gravity pipe lining is a combination of these two
stress states. In this respect, provided failure is due to buckling rather than material breakdown, the effect of
superimposing a state of compression on a microfracturing material is to close the cracks and enhance
performance. This suggests a response intermediate between those defined by the individual stress states is
implied over the stress range of interest. Furthermore, since Table 2 shows that the spread in the values of
corresponding material parameters is no more than 20%, we assume that all consistently defined variations
in constitutive behaviour between the two stress states will give essentially similar results. Accordingly we
here consider, as a first approximation, the simplest such model:

g = ESASA + ESBSB (20)

where ¢ is the extreme fibre total stress and:
ESB _ [ABO_(mB—l)_L_nB]_I; ESA _ [AAO.(mgfl)TnA]_l (213,21b)

In Egs. (20) and (21) the subscripts B and 4 indicate material constants obtained in bending and axial
compression respectively, as defined in Table 2. Substituting Egs. (21) into Egs. (4), (6), (7), and (13) results
in essentially unmodified equations with EI, EA replaced everywhere by Esgl, EsaA respectively.

In the proposed numerical analysis material properties are evaluated at the location of maximum de-
flection (w;), which is the cross-section carrying the maximum tensile and compressive strains in the lining.
The stresses at all other cross-sections are then defined by these values of Esp, Espa and Egs. (3) and (4).
Since m ~ 1, this will render an otherwise slightly over-stiff solution a little more flexible, and should not
therefore imply any significant additional approximation.

The flow diagram delineated in Fig. 6 illustrates the major steps in the solution process. At step 1 input
of the system geometric and material parameters is required. Fig. 7 illustrates the basic creep performance
at constant stress. Eq. (16) represents only the primary and secondary creep response; an independent initial
elastic modulus can be defined using standard short-term testing procedure. This can be used to obtain the
linear elastic solution at t = 0, with the full load (p) applied at this stage (Fig. 7, point A). The creep process
can then be started from t = 1 h (Fig. 7, point B). An initial approximation (wy, ¢,) is therefore required at
step 2, from which the linearly elastic solution at T = 0 can converge. This can be obtained by establish-
ing p.; for this system using Eq. (14) and the identified short-term modulus. Thence the value of w
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Fig. 6. Flow chart for the creep solution process described in Section 4.

corresponding to p; can be obtained and proportioned by p/pei. The value of w; so calculated can be
taken with any reasonable value for ¢, (say 5-45°, see Fig. 3) to provide appropriate starting values.

At step 3 set 6t =1 h, 1 = 0; steps 6-9 and corresponding convergence criteria then obtain the initial
creep solution at 7 = 1 h by Newton—Raphson iteration (Press et al., 1989). ot is retained at 1 h for the first



J.C. Boot et al. | International Journal of Solids and Structures 40 (2003) 7299-7314 7309

A tertiary creep
(not modelled) &,

C

\ e=Ao"t"

(primary and secondary creep paths)

initial elastic response

T
1hour (hour)

Fig. 7. The basic material creep process for (approximately) constant stress and its numerical implementation.

increment of creep deformation, and subsequently redefined as appropriate to follow the creep process,
taking this to be controlled by secondary creep of the lining material throughout the vast majority of the
system life. Thus secondary material creep will eventually precipitate tertiary system creep due to the in-
creasing bending moments generated by the constant axial hoop force acting at increasing eccentricity due
to the accumulating creep deformations. Creep buckling can be sensibly taken to occur at the onset of
tertiary system creep (Fig. 7, point C) as this is a reasonably clearly defined point beyond which creep life is
relatively short and unstable. Fig. 8 shows the creep response obtained by the proposed simple solution for
a typical problem with the following specification:

Outside lining diameter (D.) = 300 mm

Lining thickness (f) = 6 mm

SDR = D, /t = 50

Symmetrical gap (wg) = 1.4 mm (0.467%)

E (lining) defined by the flexural creep properties given in Table 2 and a short-term value of 3860 MPa.

25

maximum displacement (mm)

—o—simple model
5 —e—finite element

0 200 400 600 800 1000 1200 1400 1600 1800
time (hour)

Fig. 8. Comparison of creep curves obtained from the simple model and FE analysis for the representative problem specified in
Section 4.
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8-node  quadratic
plane stress element

\

Uy= X

Fig. 9. FE model used to simulate two lobe creep buckling.

Also shown is the corresponding result obtained from a FE analysis of the same problem (Abaqus 5.8,
1998). The major details of the FE simulation are illustrated in Fig. 9; only one quadrant is modelled due to
symmetry. For single lobe behaviour, two quadrants are modelled, and the rigid surface located eccentric to
the lining (i.e., contact at one point). The FE simulation incorporates a viscoelastic representation of the
same creep data (Poisson’s ratio v = 0.37) of the form:

0y = / G(t — 7))y () d7
0

where o;;, 7,; are shear stress and strain rate, G is the ‘relaxation modulus’, and the integration is carried
out over all past times 7" up to the current time 7. G(t) is obtained from the best least squares fit to the
extreme fibre strain—time data from the uniaxial flexural tests (Ferry, 1980).

There are therefore significant differences between the two analyses:

e The material models used are different ‘best fits’ to the data; in particular G(t) is the same at all stress
levels (equivalent to m = 1).

e The FE simulation is a fully geometrically non-linear two-dimensional plane stress analysis and a con-
sistent contact algorithm is defined at the correct location, whereas the simple analysis is a centroidal
model.

e The time-stepping procedures are different.

Nevertheless, these significant differences in formulation result only in minor differences in overall be-
haviour as illustrated in Fig. 8, which demonstrates the mutually supportive nature of both sets of results.
However, the FE analysis is not suitable for routine design, and cannot take account of the different
properties measured in flexure and compression for the representative material.

Fig. 10 shows the test data obtained from a set of physical creep tests (in which linings were subject to
external pressure), together with numerical predictions for these results obtained using the analysis of Fig. 6
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Fig. 10. Comparison of simple model and FE results with the experimental data due to Guice et al.

incorporating the material properties specified by Egs. (16), (20) and Table 2. The physical test results are
those reported by Guice et al. (1994). The linings were of 300 mm external diameter, 6 mm thickness, and
were tested as cast—i.e., incorporating a small approximately symmetrical gap with the host pipe caused by
curing shrinkage. The following points are pertinent to the interpretation of this data:

(a)

(b)
(c)

(d)

©)

The linings were made of essentially the same material as that quantified by Eq. (16) and Table 2. Guice
et al. did not directly assess material creep. Nevertheless, since both measurements of short-term flex-
ural properties yielded very similar results, it can be reasonably assumed that long-term mechanical re-
sponse in the creep pressure tests of Guice et al. can be defined by Eq. (16) and Table 2.

Failure in all cases was reported to be due to geometrical instability (creep buckling) rather than ma-
terial breakdown.

No deformations were monitored in these tests. Nevertheless, subsequent test monitoring using the
same basic test technique at the same laboratory (Seeman et al., 2001; Zhu and Hall, 2001) strongly
suggests that these samples all experienced two lobe deformation prior to buckling. This is also in
agreement with similar test results obtained by others (Boot and Welch, 1996). Accordingly numerical
predictions of Guice et al.’s results are here obtained using k, wj, C defined according to Egs. (10).
Study of Eq. 14 and Table 1 shows that up to wy, ~ 0.7%, system behaviour is imperfection sensitive,
with p.; decreasing in a non-linear manner as wy, increases. Conversely for wyp, > 1% p.; decreases ap-
proximately linearly with wy, over the range of wy, of practical interest. Guice et al. approximately as-
sessed the initial gaps in their systems by measuring the maximum gap at each end of every test
specimen using a ruler. These results yield an overall average maximum gap for all 37 specimens in
the test series of 0.77 £ 0.41% (mean * standard error in mean). Thus we conclude that a proportion
of these tests will have exhibited imperfection sensitive behaviour, and this fact has no doubt contrib-
uted to the level of scatter in the results obtained.

Nevertheless, every effort was made to maintain homogeneity of lining properties and test procedure
for all specimens, and the results demonstrate typical spreads for creep testing of one logarithmic de-
cade in time at each test pressure. Accordingly the discrepancies from mean behaviour can be antici-
pated to be distributed at random in a statistically valid manner. Since creep behaviour is essentially
a power law (logarithmic) function of the system parameters (Struik, 1978) the linear regression line
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though the creep life/pressure data in logarithmic space (Line 1, Fig. 10) can therefore be expected to
provide a comparable estimate of performance in the mean to that predicted by a valid mathematical
model incorporating the average measured system properties.

Based on the above observations, we conclude that these results can be used to establish the validity of
the proposed numerical and material modelling procedures. The numerical results presented in Fig. 10
assume a symmetrical annular gap imperfection of 1.4 mm or 0.952% IOD. This is slightly greater than the
average measured gap, but within the range, measured by Guice et al. However, it must be recalled that
their measurement of gap was only local and approximate. Furthermore, in addition to the gap, there will
also be imperfections in lining thickness, material property, and circularity. If all the imperfections in the
system are considered to contribute to an equivalent characteristic gap imperfection (i.e., characteristic of
the system under consideration) this will clearly be slightly higher than the actual average gap.

Line 0 shows the creep life against time relationship predicted by the numerical analysis incorporating
the axial compressive creep data. As might be expected, this material model yields a significant upper bound
to the creep buckling data, since the flexural component of strain is underestimated. In addition, the slope
of this line is clearly greater than that of the regression line. It has been argued that a better use of the
overall available creep data is superposition of the independently measured axial and flexural components
of deformation according to Egs. (20), (21), and Table 2. Line 2 shows that the solution obtained using this
material model compares extremely well with the test data regression line. Nevertheless, this is a very in-
convenient material model for design purposes, since it requires two sets of creep tests to be undertaken for
any given material. In particular, current design focuses on the flexural creep properties (WIS 4-34-04, 1995;
ASTM F 1216-98), and it is therefore of interest to investigate the level of approximation implied by this
procedure. Line 3 shows the solution obtained using the flexural modulus (obtained from Eq. (16) and
Table 2) corresponding to the extreme fibre flexural stress at the cross-section experiencing maximum
deflection. This is also a remarkably close approximation to the regression line though the experimental
data, and gives an almost identical solution to the FE model (not plotted to avoid confusion).

Clearly, the significance of the results presented in Fig. 10 depends to some extent on the validity of the
assumed symmetrical gap imperfection of 1.4 mm. Fig. 11 shows that the slope of the prediction line is

700 &
m
=
500 wr
=
©
o
=
£ 300 -
3
3
n
4
a
200
experiment flexural E flexural E  flexural E
P gap 1.0 mm gap 1.4 mm gap 1.8 mm
- — e - - —
50 years
| Ll Ll Ll Ll Ll Ll MR | NIRRT
0.1 1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

time (hour)

Fig. 11. Showing the effect of varying initial gap on the solution given by line 3 on Fig. 10.
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unaffected by variation in gap, but that the intercept is quite sensitive to this parameter. In addition the
most appropriate characteristic gap imperfection to adopt for this system can only be identified by means of
back-analysis and statistical examination using the available test data. In this respect the value adopted of
wp = 1.4 mm (=1% of pipe radius), is consistent with all the measurements and qualitative arguments
governing selection of this parameter. Furthermore, the simple solution procedure incorporating the ma-
terial formulation based on superposition of the flexural and axial compressive creep data (Egs. (20), (21)
and Table 2) and the linear regression line to the physical data show a level of agreement well within the
statistical validity of the latter.

5. Conclusions

1. Design of nominally circular polymeric linings for gravity pipes requires a determination of creep life
subject to constant external hydrostatic pressure.

2. Providing an adequate safety factor against constrained creep buckling of the lining within the rigid con-
straint of the host pipe-soil system is normally the critical design criterion for the thin-walled linings
used for this purpose.

3. The stress state in the lining is therefore one of combined bending and membrane compressive stresses.
Standard creep testing of a representative polymeric material under pure bending and axial loading has
revealed significantly different responses in the two stress states. Both physical and numerical test data
indicates these systems fail in geometric instability prior to any material yielding or fracture.

4. An existing relatively simple analysis for the determination of linearly elastic buckling pressures for cir-
cular linings subject to small imperfections has here been re-expressed in a more generalised non-linear
elastic form, including independent response in flexure and compression, to more closely simulate the
observed material behaviour. The equations have then been expressed in a form suitable for numerical
solution, and a simple time-stepping procedure for determination of creep lives based on the onset of
buckling has been developed. The results obtained have been verified against corresponding FE and
physical test results. The simple analysis has therefore been shown to give a convenient solution to
the problem posed.

5. In addition it has been shown that for the material investigated, the simple analysis defined in terms of
the time-dependent non-linear elastic modulus obtained in pure flexure gives a very good correlation
with the test data, and consequently there is no significant advantage in using the more complex formu-
lation incorporating separate moduli for the flexural and compressive deformations. This observation
amounts to an endorsement of current (previously unvalidated) industrial procedure.
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